SUPPLEMENTAL DATA

Supplemental Table 1. Single nucleotide polymorphism within the Russian breeds for GGP HD150K and Bovine SNP50K arrays (autosomal, unfiltered sample datasets)

В	1.1		Proportion of			
Breed	N	Mean MAF	polymorphic loci			
	GGP HD150K					
Bestuzhev	20	0.278	0.960			
Black Pied	24	0.286	0.971			
Buryat	24	0.271	0.959			
Kalmyk	23	0.283	0.975			
Kazakh Whiteheaded	20	0.275	0.954			
Kholmogory	39	0.277	0.967			
Kostroma	24	0.266	0.957			
Tagil	20	0.288	0.980			
Ukrainian						
Whiteheaded	10	0.282	0.951			
Yakut	26	0.214	0.841			
Yaroslavl	20	0.273	0.973			
	E	BovineSNP50K				
Ala Tau	15	0.213	0.818			
Hereford	10	0.207	0.772			
Istoben	5	0.195	0.694			
Gorbatov Red	7	0.215	0.786			
Red Pied	2	0.184	0.551			
Red Steppe	5	0.218	0.773			
Yurino	3	0.190	0.630			
Total/Average	297	0.245	0.862			

Supplemental Figure 1. Historical effective population size (N_e) of Russian breeds with >10 sampled individuals for 1,600 (A) and 200 generation (B) intervals.

Supplemental Figure 2. Average total length and average number of runs of homozygosity (ROHs > 500 Kbp/ and > 4 per animal) for the Russian cattle breeds.

Supplemental Figure 3. A principal component analysis of the global cattle diversity and the Russian breeds. Top left corner -B. taurus of Eurasian ancestry (European, Asian, American taurine breeds), top right corner -B. indicus breeds, bottom central group - mainly African B. taurus breeds. Russian breeds cluster together with taurine breeds of the Eurasian ancestry.

Supplemental Figure 4. Haplotype-sharing between the Russian and other taurine breeds for intermediate (>3Mbp and <7 Mbp) segments.

Supplemental Figure 5. Short-segment haplotype sharing (average total Mbp per animal) for Yakut and Kalmyk breeds from the Iso-Touru et al. 2016. Breed names are shown for the largest number of shared haplotypes (>1.5 Mbp). Vertical lines indicate positions of *B. indicus* breeds.

Supplemental Figure 6. PCA of the Russian and closely related European and Asian taurine breeds.

Supplemental Figure 7. Plot of the fastSTRUCTURE marginal likelihood values for the K=1-40 (dataset of the Russian and closely related to them world breeds).

Supplemental Figure 8. Treemix graph showing migrations within the set of Russian and closely related world breeds from Decker et al., 2014.

Supplemental Figure 9. Treemix graph showing migrations within/between Russian and indicine cattle breeds from Decker et al, 2014.